Sekretariat
-
Godziny pracy
-
pn. - czw.: 8:00 - 15:30
pt.: 8:00 - 14:00
-
Przyjmowanie interesantów
-
pn., wt., śr.: 9:00 - 15:30
pt.: 9:00 - 14:00
-
Pokój
-
2009
-
Telefon
-
85 738 8284
-
Fax
-
85 738 8313
-
Adres e-mail
-
[email protected]
Realizacja zadań badawczych w ramach projektu NCN Weave-Unisono (we współpracy z Instytutem Matematyki Uniwersytetu Karola w Pradze) pt. „Kwantowa geometryczna teoria reprezentacji i rozwłóknienia nieprzemienne”.
Więcej...
Więcej ogłoszeń...
Brak aktualnych wydarzeń.Minione wydarzenia...
Seminarium WM
-
Universality of the Weyl-Heisenberg symmetry and its covariant quantizations
prof. Jean Pierre Gazeau , Université Paris Cité
2024-12-11 godz. 13:15 - 14:15
Więcej...
Seminaria w jednostkach
-
Locally reflexivity in operator spaces
dr Andrew McKee
2024-11-29 godz. 13:15
-
Automorphic Lie algebras on complex tori
Casper Oelen, Heriot Watt
2024-12-04 godz. 11:30 - 13:00
Automorphic Lie algebras are a class of infinite-dimensional Lie algebras over the complex field $\mathbb{C}$ that emerged in the context of mathematical physics, and more precisely in the context of integrable systems. They can be thought of as Lie algebras of meromorphic maps (usually with prescribed poles) from a compact Riemann surface $X$ into a finite-dimensional Lie algebra $\mathfrak{g}$, which are equivariant with respect to a finite group $G$ acting on $X$ and on $\mathfrak{g}$, both by automorphisms. We will discuss a classification for $\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$ and where $X$ is a complex torus. For each case in the classification, we compute a basis in a normal form. The automorphic Lie algebras correspond precisely to two disjoint families of Lie algebras parametrised by the modular curve of $\mathrm{PSL}_2(\mathbb{Z})$, apart from four cases, which are all isomorphic to Onsager's algebra.
This work has been done in collaboration with Vincent Knibbeler and Sara Lombardo.
Ostatnio wydane publikacje
-
T. Goliński, A. B. Tumpach
Geometry of Integrable Systems Related to the Restricted Grassmannian
Symmetry Integrability Geom. Methods Appl. 20 (2024), 1-18.
DOI:
10.3842/SIGMA.2024.104
-
M. Pankov, K. Petelczyc, M. Żynel
Point-line geometries related to binary equidistant codes
J. Combin. Theory Ser. A (2024), (on-line first).
DOI:
10.1016/j.jcta.2024.105962
-
T. Brzeziński, M. Hryniewicka
Translation Hopf algebras and Hopf heaps
Algebr. Representat. Theor. 27 (2024), 1805-1819.
DOI:
10.1007/s10468-024-10283-9
-
M. Woronowicz
O grupach addytywnych pierścieni Hamiltona
Perspektywy rozwoju w naukach inżynieryjno-technicznych – trendy, innowacje i wyzwania (P. Pomajda, M. Świtalski Ed(s).), vol. 1, Wydawnictwo Naukowe TYGIEL sp. z o.o., Lublin, Polska, 2024, pp. 277-302.
-
T. Brzeziński
Special Normalised Affine Matrices: An Example of a Lie Affgebra
Geometric Methods in Physics XL, Workshop, Białowieża, Poland, 2023, (P. Kielanowski, D. Beltita, A. Dobrogowska, T. Goliński et al. Ed(s).), Trends in Mathematics , (publ. by) Birkhauser Verlag, 2024, pp. 115-125.
DOI:
10.1007/978-3-031-62407-0_9
Więcej...